Author:
Cohen-Rosenzweig Chen,Guan Ziqiang,Shaanan Boaz,Eichler Jerry
Abstract
ABSTRACTAcross evolution, N-glycosylation involves oligosaccharyltransferases that transfer lipid-linked glycans to selected Asn residues of target proteins. While these enzymes catalyze similar reactions in each domain, differences exist in terms of the chemical composition, length and degree of phosphorylation of the lipid glycan carrier, the sugar linking the glycan to the lipid carrier, and the composition and structure of the transferred glycan. To gain insight into how oligosaccharyltransferases cope with such substrate diversity, the present study analyzed the archaeal oligosaccharyltransferase AglB from four haloarchaeal species. Accordingly, it was shown that despite processing distinct lipid-linked glycans in their native hosts, AglB fromHaloarcula marismortui,Halobacterium salinarum, andHaloferax mediterraneicould readily replace their counterpart fromHaloferax volcaniiwhen introduced intoHfx. volcaniicells deleted ofaglB. As the four enzymes show significant sequence and apparently structural homology, it appears that the functional similarity of the four AglB proteins reflects the relaxed substrate specificity of these enzymes. Such demonstration of AglB substrate promiscuity is important not only for better understanding of N-glycosylation inArchaeaand elsewhere but also for efforts aimed at transformingHfx. volcaniiinto a glycoengineering platform.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献