Author:
Zheng Huabao,Wang Xuan,Yomano Lorraine P.,Shanmugam Keelnatham T.,Ingram Lonnie O.
Abstract
ABSTRACTFurfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilisYB886,Escherichia coliNC3, andZymomonas mobilisCP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing thethyAgene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in thede novopathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression ofthyAwas no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA inE. coliand to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA inE. coliwould be expected to increase the cellular requirement for dTMP. Increased expression ofthyA(E. coli,B. subtilis, orZ. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献