Whole-Genome Sequence and Fermentation Characteristics of Enterobacter hormaechei UW0SKVC1: A Promising Candidate for Detoxification of Lignocellulosic Biomass Hydrolysates and Production of Value-Added Chemicals

Author:

Kumar Santosh1ORCID,Agyeman-Duah Eric1ORCID,Ujor Victor C.1

Affiliation:

1. Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA

Abstract

Enterobacter hormaechei is part of the Enterobacter cloacae complex (ECC), which is widespread in nature. It is a facultative Gram-negative bacterium of medical and industrial importance. We assessed the metabolic and genetic repertoires of a new Enterobacter isolate. Here, we report the whole-genome sequence of a furfural- and 5-hydroxymethyl furfural (HMF)-tolerant strain of E. hormaechei (UW0SKVC1), which uses glucose, glycerol, xylose, lactose and arabinose as sole carbon sources. This strain exhibits high tolerance to furfural (IC50 = 34.2 mM; ~3.3 g/L) relative to Escherichia coli DH5α (IC50 = 26.0 mM; ~2.5 g/L). Furfural and HMF are predominantly converted to their less-toxic alcohols. E. hormaechei UW0SKVC1 produces 2,3-butanediol, acetoin, and acetol, among other compounds of industrial importance. E. hormaechei UW0SKVC1 produces as high as ~42 g/L 2,3-butanediol on 60 g/L glucose or lactose. The assembled genome consists of a 4,833,490-bp chromosome, with a GC content of 55.35%. Annotation of the assembled genome revealed 4586 coding sequences and 4516 protein-coding genes (average length 937-bp) involved in central metabolism, energy generation, biodegradation of xenobiotic compounds, production of assorted organic compounds, and drug resistance. E. hormaechei UW0SKVC1 shows considerable promise as a biocatalyst and a genetic repository of genes whose protein products may be harnessed for the efficient bioconversion of lignocellulosic biomass, abundant glycerol and lactose-replete whey permeate to value-added chemicals.

Funder

USDA-National Institute of Food and Agriculture Hatch award

Dairy Innovation Hub

Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison

Wisconsin Alumni Research Foundation

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3