Reactive Oxygen Species Contribute to the Bactericidal Effects of the Fluoroquinolone Moxifloxacin in Streptococcus pneumoniae

Author:

Ferrándiz M. J.1,Martín-Galiano A. J.1,Arnanz C.1,Zimmerman T.1,de la Campa A. G.12

Affiliation:

1. Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain

2. Presidencia. Consejo Superior de Investigaciones Científicas, Madrid, Spain

Abstract

ABSTRACT We studied the transcriptomic response of Streptococcus pneumoniae to the fluoroquinolone moxifloxacin at a concentration that inhibits DNA gyrase. Treatment of the wild-type strain R6, at a concentration of 10× the MIC, triggered a response involving 132 genes after 30 min of treatment. Genes from several metabolic pathways involved in the production of pyruvate were upregulated. These included 3 glycolytic enzymes, which ultimately convert fructose 6-phosphate to pyruvate, and 2 enzymes that funnel phosphate sugars into the glycolytic pathway. In addition, acetyl coenzyme A (acetyl-CoA) carboxylase was downregulated, likely leading to an increase in acetyl-CoA. When coupled with an upregulation in formate acetyltransferase, an increase in acetyl-CoA would raise the production of pyruvate. Since pyruvate is converted by pyruvate oxidase (SpxB) into hydrogen peroxide (H 2 O 2 ), an increase in pyruvate would augment intracellular H 2 O 2 . Here, we confirm a 21-fold increase in the production of H 2 O 2 and a 55-fold increase in the amount of hydroxyl radical in cultures treated during 4 h with moxifloxacin. This increase in hydroxyl radical through the Fenton reaction would damage DNA, lipids, and proteins. These reactive oxygen species contributed to the lethality of the drug, a conclusion supported by the observed protective effects of an SpxB deletion. These results support the model whereby fluoroquinolones cause redox alterations. The transcriptional response of S. pneumoniae to moxifloxacin is compared with the response to levofloxacin, an inhibitor of topoisomerase IV. Levofloxacin triggers the transcriptional activation of iron transport genes and also enhances the Fenton reaction.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3