Within-Host Selection of Drug Resistance in a Mouse Model of Repeated Incomplete Malaria Treatment: Comparison between Atovaquone and Pyrimethamine

Author:

Nuralitha Suci1,Siregar Josephine E.1,Syafruddin Din1,Roelands Jessica1,Verhoef Jan2,Hoepelman Andy I. M.3,Marzuki Sangkot1

Affiliation:

1. Eijkman Institute for Molecular Biology, Jakarta, Indonesia

2. Medical Microbiology and Infection, University Medical Center Utrecht, Utrecht, Netherlands

3. Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands

Abstract

ABSTRACT The evolutionary selection of malaria parasites within individual hosts is an important factor in the emergence of drug resistance but is still not well understood. We have examined the selection process for drug resistance in the mouse malaria agent Plasmodium berghei and compared the dynamics of the selection for atovaquone and pyrimethamine. Resistance to these drugs has been shown to be associated with genetic lesions in the dihydrofolate reductase gene in the case of pyrimethamine and in the mitochondrial cytochrome b gene for atovaquone. A mouse malaria model for the selection of drug resistance, based on repeated incomplete treatment (RICT) with a therapeutic dose of antimalarial drugs, was established. The number of treatment cycles for the development of stable resistance to atovaquone (2.47 ± 0.70; n = 19) was found to be significantly lower than for pyrimethamine (5.44 ± 1.46; n = 16; P < 0.0001), even when the parental P. berghei Leiden strain was cloned prior to the resistance selection. Similar results were obtained with P. berghei Edinburgh. Mutational changes underlying the resistance were identified to be S110N in dihydrofolate reductase for pyrimethamine and Y268N, Y268C, Y268S, L271V-K272R, and G280D in cytochrome b for atovaquone. These results are consistent with the rate of mitochondrial DNA mutation being higher than that in the nucleus and suggest that mutation leading to pyrimethamine resistance is not a rare event.

Funder

Ministry for Research and Technology, Republic of Indonesia,

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3