Author:
Pethrak Chatpong,Posayapisit Navaporn,Pengon Jutharat,Suwanakitti Nattida,Saeung Atiporn,Shorum Molnipha,Aupalee Kittipat,Taai Kritsana,Yuthavong Yongyuth,Kamchonwongpaisan Sumalee,Jupatanakul Natapong
Abstract
AbstractAntifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, the thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, have yet to be achieved. Using a transgenic P. berghei harboring quadruple mutant dhfr from P. falciparum (Pb::Pfdhfr-4M), we demonstrate that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not a new class of antifolate designed to overcome the resistance such as P218. Detailed investigation to pin-point stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from early hepatic trophozoite to late hepatic trophozoite, but is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data shows that P218 also inhibited the late hepatic stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg, P218 prevented infection from up to 25,000 pyrimentamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates, as a chemopreventive therapeutic which could lead to a more efficient and cost effective treatment regime.
Publisher
Cold Spring Harbor Laboratory