Functional analysis of the sialyltransferase complexes in Escherichia coli K1 and K92

Author:

Steenbergen S M1,Wrona T J1,Vimr E R1

Affiliation:

1. Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana 61801.

Abstract

The polysialyltransferase (polyST) structural gene, neuS, for poly alpha 2,8sialic acid (PSA) capsule synthesis in Escherichia coli K1 was previously mapped near the kps region 1 and 2 junction (S. M. Steenbergen and E. R. Vimr, Mol. Microbiol. 4:603-611, 1990). Present Southern and colony blot hybridization results confirmed that neuS was a region 2 locus and indicated apparent homology with neuS from E. coli K92, bacteria that synthesize a sialyl alpha 2,8-2,9-linked polymer. A K1- mutant with an insertion mutation in neuS was complemented in trans by K92 neuS, providing direct evidence that neuS encoded the PSA polymerase. A 2.9-kb E. coli K1 kps subclone was sequenced to better characterize polyST. In addition to neuS, the results identified a new open reading frame, designated neuE, the linker sequence between regions 1 and 2, and the last gene of region 1, kpsS. The kpsS translational reading frame was confirmed by sequencing across the junction of a kpsS'-lacZ+ fusion. PolyST was identified by maxicell analysis of nested deletions and coupled in vitro transcription-translation assays. PolyST's derived primary structure predicted a 47,500-Da basic polypeptide without extensive similarity to other known proteins. PolyST activity was increased 31-fold and was membrane localized when neuS was cloned into an inducible expression vector, suggesting, together with the polyST primary structure, that polyST is a peripheral inner membrane glycosyltransferase. However, polyST could not initiate de novo PSA synthesis, indicating a functional requirement for other kps gene products. The existence of a sialyltransferase distinct from polyST was suggested by identification of a potential polyprenyl-binding motif in a C-terminal membrane-spanning domain of the predicted neuE gene product. Direct evidence for a quantitatively minor sialyltransferase activity, which could function to initiate PSA synthesis, was obtained by phenotypic analysis of mutants with multiple defects in sialic acid synthesis, degradation, and polymerization. The results provide an initial molecular description of K1 and K92 sialyltransferase complexes and suggest a possible common function for accessory kps gene products.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3