NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions.

Author:

Acheson A1,Sunshine J L1,Rutishauser U1

Affiliation:

1. Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada.

Abstract

We have proposed previously that the polysialic acid (PSA) moiety of NCAM can influence membrane-membrane apposition, and thereby serve as a selective regulator of a variety of contact-dependent cell interactions. In this study, cell and tissue culture models are used to obtain direct evidence that the presence of PSA on the surface membrane can affect both cell-cell and cell-substrate interactions. Using a neuroblastoma/sensory neuron cell hybrid, it was found that removal of PSA with a specific neuraminidase (endo-N) augments cell-cell aggregation mediated by the L1 cell adhesion molecule as well as cell attachment to a variety of tissue culture substrates. In studies of embryonic spinal cord axon bundling, which involves both cell-cell and cell-substrate interactions, the pronounced defasciculation produced by removal of PSA is most easily explained by an increase in cell-substrate interaction. The fact that in both studies NCAM's intrinsic adhesion function was found not to be an important variable further illustrates that regulation of the cell surface by PSA can extend beyond binding mediated by the NCAM polypeptide.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3