Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export

Author:

Wenren Larissa M.1,Sullivan Nora L.1,Cardarelli Lia1,Septer Alecia N.1,Gibbs Karine A.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA

Abstract

ABSTRACT Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in contrast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for this territorial behavior. Here we have identified two new gene clusters: one ( idr ) encodes rhs -related products, and another ( tss ) encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracellular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system. The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for the fundamental behaviors of self-recognition and territoriality in a bacterial model system. IMPORTANCE Our results support a model in which self-recognition in P. mirabilis is achieved by the combined action of two independent pathways linked by a shared machinery for export of encoded self-recognition elements. These proteins together form a mechanistic network for self-recognition that can serve as a foundation for examining the prevalent biological phenomena of territorial behaviors and self-recognition in a simple, bacterial model system.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3