Affiliation:
1. Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
Abstract
With the increasing popularity of e-cigarettes among cigarette smoking and nonsmoking adults and children and the recent reports of vaping-related lung illness and deaths, further analysis of the adverse health effects of e-cigarette vapor (EV) exposure is warranted. Since pathogenic bacteria such as
Streptococcus pneumoniae
can colonize the human nasopharynx as commensals, they may be affected by exposure to bioactive chemicals in EV. Hence, in this study we examined the effects of EV exposure on the physiology of
S. pneumoniae
strain TIGR4. In order to differentiate between the effects of nicotine and nonnicotine components, we specifically compared the RNA-Seq profiles and virulence of TIGR4 exposed to vapor from nicotine-containing and nicotine-free e-liquid formulations. We observed that nicotine-containing EV augmented TIGR4 biofilms and altered expression of TIGR4 genes predominantly involved in metabolism and stress response. However, neither nicotine-containing nor nicotine-free EV affected TIGR4 virulence in a mouse model.
Funder
Louisiana Board of Regents
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献