Gamma Interferon Triggers Interaction between ICSBP (IRF-8) and TEL, Recruiting the Histone Deacetylase HDAC3 to the Interferon-Responsive Element

Author:

Kuwata Takeshi1,Gongora Celine1,Kanno Yuka1,Sakaguchi Kazuyasu2,Tamura Tomohiko1,Kanno Tomohiko1,Basrur Venkatesha2,Martinez Robert3,Appella Ettore2,Golub Todd3,Ozato Keiko1

Affiliation:

1. Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development

2. Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

3. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT ICSBP (IRF-8) is a transcription factor of the IRF family expressed only in the immune system. It is induced in macrophages by gamma interferon (IFN-γ) and contributes to macrophage functions. By interacting with Ets family protein PU.1, ICSBP binds to the IRF/Ets composite element and stimulates transcription. ICSBP binds to another DNA element, the IFN-stimulated response element (ISRE), a common target of the IRF family. Limited knowledge as to how ICSBP and other IRF proteins regulate ISRE-dependent transcription in IFN-γ-activated macrophages is available. By mass-spectrometric analysis of ISRE-bound proteins in macrophages, we identified TEL, another Ets member, as a factor recruited to the element in an IFN-γ-dependent manner. In vitro analysis with recombinant proteins indicated that this recruitment is due to a direct interaction between ICSBP and TEL, which is enhanced by the presence of ISRE. Significantly, the interaction with TEL in turn resulted in the recruitment of the histone deacetytase HDAC3 to the ISRE, causing increased repression of IFN-γ-mediated reporter activity through the ISRE. This repression may provide a negative-feedback mechanism operating after the initial transcriptional activation by IFN-γ. By associating with two different Ets family proteins, ICSBP exerts a dual function in IFN-γ-dependent gene regulation in an immune system-specific manner.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3