Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

Author:

Fleige Christian1,Meyer Florian1,Steinbüchel Alexander12

Affiliation:

1. Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany

2. Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

ABSTRACT The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for the central vanillin catabolism enzyme, vanillin dehydrogenase. This mutation resulted in improvement of the final concentration of vanillin by more than 2.2 g/liter, with a molar yield of 80.9%. Further improvement was achieved with constitutive expression of the vanillin anabolism genes ech and fcs , coding for the enzymes feruloyl-coenzyme A (CoA) synthetase ( fcs ) and enoyl-CoA hydratase/aldolase ( ech ). The transcription of both genes was shown to be induced by ferulic acid, which explains the unwanted adaptation phase in the fermentation process before vanillin was efficiently produced by the wild-type cells. Through the constitutive and enhanced expression of the two genes, the adaptation phase was eliminated and a final vanillin concentration of 19.3 g/liter, with a molar yield of 94.9%, was obtained. Moreover, an even higher final vanillin concentration of 22.3 g/liter was achieved, at the expense of a lower molar yield, by using an improved feeding strategy. This is the highest reported vanillin concentration reached in microbial fermentation processes without extraction of the product. Furthermore, the vanillin was produced almost without by-products, with a molar yield that nearly approached the theoretical maximum. IMPORTANCE Much effort has been put into optimization of the biotechnological production of natural vanillin. The demand for this compound is growing due to increased consumer concerns regarding chemically produced food additives. Since this compound is toxic to most organisms, it has proven quite difficult to reach high concentrations and molar yields. This study shows that improvements in the final vanillin concentrations and molar yields can be made through a combination of modification of the fermentation parameters and molecular strain engineering, without the need for methods such as continuous extraction from the fermentation broth. Using this approach, we were able to reach a final vanillin concentration of 22.3 g/liter, which is the highest vanillin concentration reported to date that was generated with Amycolatopsis sp. ATCC 39116 without additional extraction of the toxic product.

Funder

Symrise AG

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference36 articles.

1. Improved vanillin production in baker's yeast through in silico design

2. Biotechnological production of vanillin

3. Microbial production of biovanillin

4. Production of food aroma compounds: microbial and enzymatic methodologies;Longo M;Food Technol Biotechnol,2006

5. Industrial biocatalysis today and tomorrow

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3