Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay

Author:

Williamson Charles H. D.1,Vazquez Adam J.1,Hill Karen2,Smith Theresa J.3,Nottingham Roxanne1,Stone Nathan E.1,Sobek Colin J.1,Cocking Jill H.4,Fernández Rafael A.5,Caballero Patricia A.5,Leiser Owen P.1,Keim Paul1ORCID,Sahl Jason W.1

Affiliation:

1. Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA

2. Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

3. Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA

4. Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA

5. Área Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina

Abstract

ABSTRACT Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since BoNT-producing and nontoxigenic isolates can be found in each species, a PCR assay to determine the presence of the ntnh gene, which is a universally present component of bont gene clusters, and to provide information about the type ( ha + or orfX + ) of bont gene cluster present in a sample was also developed. The PCR assays provide simple, rapid, and inexpensive tools for screening uncharacterized isolates from clinical or environmental samples. The information provided by these assays can inform epidemiological studies, aid with identifying mixtures of isolates and unknown isolates in culture collections, and confirm the presence of bacteria of interest.

Funder

U.S. Department of Homeland Security

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3