Platelet-Derived Growth Factor BB Induces Nuclear Export and Proteasomal Degradation of CREB via Phosphatidylinositol 3-Kinase/Akt Signaling in Pulmonary Artery Smooth Muscle Cells

Author:

Garat Chrystelle V.12,Fankell Dana1,Erickson Paul F.1,Reusch Jane E.-B.34,Bauer Natalie N.1,McMurtry Ivan F.12,Klemm Dwight J.312

Affiliation:

1. Cardiovascular Pulmonary Research

2. Divisions of Pulmonary and Critical Care Medicine

3. Research Service, Veterans Affairs Medical Center

4. Endocrinology, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262

Abstract

ABSTRACT Cyclic AMP response element binding protein (CREB) content is diminished in smooth muscle cells (SMCs) in remodeled pulmonary arteries from animals with pulmonary hypertension and in the SMC layers of atherogenic systemic arteries and cardiomyocytes from hypertensive individuals. Loss of CREB can be induced in cultured SMCs by chronic exposure to hypoxia or platelet-derived growth factor BB (PDGF-BB). Here we investigated the signaling pathways and mechanisms by which PDGF elicits depletion of SMC CREB. Chronic PDGF treatment increased CREB ubiquitination in SMCs, while treatment of SMCs with the proteasome inhibitor lactacystin prevented decreases in CREB content. The nuclear export inhibitor leptomycin B also prevented depletion of SMC CREB alone or in combination with lactacystin. Subsequent studies showed that PDGF activated extracellular signal-regulated kinase, Jun N-terminal protein kinase, and phosphatidylinositol 3 (PI3)-kinase pathways in SMCs. Inhibition of these pathways blocked SMC proliferation in response to PDGF, but only inhibition of PI3-kinase or its effector, Akt, blocked PDGF-induced CREB loss. Finally, chimeric proteins containing enhanced cyan fluorescent protein linked to wild-type CREB or CREB molecules with mutations in several recognized phosphorylation sites were introduced into SMCs. PDGF treatment reduced the levels of each of these chimeric proteins except for one containing mutations in adjacent serine residues (serines 103 and 107), suggesting that CREB loss was dependent on CREB phosphorylation at these sites. We conclude that PDGF stimulates nuclear export and proteasomal degradation of CREB in SMCs via PI3-kinase/Akt signaling. These results indicate that in addition to direct phosphorylation, proteolysis and intracellular localization are key mechanisms regulating CREB content and activity in SMCs.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3