Affiliation:
1. Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Julian Clavería, Spain.
Abstract
Plasmid-borne resistance to fosfomycin in bacteria is due to modification of the antibiotic molecule by a glutathione S-transferase that catalyzes the formation of a covalent bond between the sulfhydryl residue of the cysteine in glutathione and the C-1 of fosfomycin. This reaction results in opening of the epoxide ring of the antibiotic to form an inactive adduct, the structure of which was confirmed by nuclear magnetic resonance. Dialyzed extracts prepared from resistant Escherichia coli strains were unable to modify fosfomycin unless exogenous glutathione was added to the reaction mixtures. Similarly, mutants defective in glutathione biosynthesis were susceptible to fosfomycin, despite harboring a resistance plasmid. Extracts of resistant but not susceptible strains could join glutathione to 1-chloro-2,4-dinitrobenzene, confirming the nature of the enzymatic activity. Adduct formation appeared to be specific for glutathione: none of the other thiols tested (cysteine, N-acetylcysteine, and dithiothreitol) could modify fosfomycin.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献