fosA11 , a novel chromosomal-encoded fosfomycin resistance gene identified in Providencia rettgeri

Author:

Lu Wei12ORCID,Zhou Shihan2,Ma Xueli1,Xu Nuo2,Liu Dongxin1,Zhang Keqing1,Zheng Yongke23,Wu Shenghai12ORCID

Affiliation:

1. Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China

2. The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China

3. Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China

Abstract

ABSTRACT This study investigated resistance genes corresponding to the fosfomycin resistance phenotype in clinical isolate Providencia rettgeri W986, as well as characterizing the enzymatic activity of FosA11 and the genetic environment. Antimicrobial susceptibility testing was performed using the agar microdilution method based on the Clinical and Laboratory Standards Institute guidelines. The whole genomic sequence of Providencia rettgeri W986 was obtained using Illumina sequencing and the PacBio platform. The fosA-11 gene was amplified by PCR and cloned into the pUCP20 vector. The recombinant strain pCold1- fosA11 -BL21 was expressed to extract the target protein, and absorbance photometry was applied for enzymatic parameter determination. Minimal inhibitory concentration (MIC) tests showed that W986 conferred fosfomycin resistance and was inhibited by phosphonoformate, thereby indicating the presence of a FosA protein. A novel resistance gene designated as fosA11 was identified by whole-genome sequencing and bioinformatics analysis, and it shared 54.41%–64.23% amino acid identity with known FosA proteins. Cloning fosA11 into Escherichia coli obtained a significant increase (32-fold) in the MIC with fosfomycin. Determination of the enzyme kinetics showed that FosA11 had a high catalytic effect on fosfomycin, with K m = 18 ± 4 and K cat = 56.1 ± 3.2. We also found that fosA11 was located on the chromosome, but the difference in the GC content between the chromosome and fosA11 was dubious, and thus further investigation is required. In this study, we identified and characterized a novel fosfomycin inactivation enzyme called FosA11. The origin and prevalence of the fosA11 gene in other bacteria require further investigation. IMPORTANCE Fosfomycin is an effective antimicrobial agent against Enterobacterales strains. However, the resistance rate of fosfomycin is increasing year by year. Therefore, it is necessary to study the deep molecular mechanism of bacterial resistance to fosfomycin. We identified a novel chromosomal fosfomycin glutathione S-transferase, FosA11 from Providencia rettgeri , which shares a very low identity (54.41%–64.23%) with the previously known FosA and exhibits highly efficient catalytic ability against fosfomycin. Analysis of the genetic context and origin of fosA11 displays that the gene and its surrounding environments are widely conserved in Providencia and no mobile elements are discovered, implying that FosA11 may be broadly important in the natural resistance to fosfomycin of Providencia species.

Funder

Zhejiang Provincial Medical and Health Technology Project

Medical and Health Technology Project of Hangzhou

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3