Abstract
Archaeoglobus fulgidus, an anaerobic marine hyperthermophile, forms a biofilm in response to environmental stresses. The biofilm is a heterogeneous, morphologically variable structure containing protein, polysaccharide, and metals. Production of the biofilm can be induced by nonphysiological extremes of pH and temperature, by high concentrations of metals, and by addition of antibiotics, xenobiotics, or oxygen. Cells within the biofilm show an increased tolerance to otherwise toxic environmental conditions. Metals sequestered within the biofilm stimulate growth of A. fulgidus cells in metal-depleted medium. These data suggest that cells may produce biofilm as a mechanism for concentrating cells and attaching to surfaces, as a protective barrier, and as a reserve nutrient. Because similar biofilms are formed by Archaeoglobus profundus, Methanococcus jannaschii, and Methanobacterium thermoautotrophicum, biofilm formation might be a common stress response mechanism among the archaea.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献