In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes

Author:

Beushausen S1,Narindrasorasak S1,Sanwal B D1,Dales S1

Affiliation:

1. Department of Microbiology and Immunology, University of Western Ontario, London, Canada.

Abstract

The specificity of JHM virus (JHMV) tropism for rat oligodendrocytes, as one of the primary host cells in the central nervous system, is maintained after explanation (S. Beushausen and S. Dales, Virology 141:89-101, 1985). The temporal correlation between onset of resistance to JHMV infection in vivo, completion of myelination, and maturation of the central nervous system can be simulated in vitro by inducers of oligodendrocyte differentiation (Beushausen and Dales, Virology, 1985). Stimulation of differentiation through the elevation of intracellular cyclic AMP (cAMP) levels suggests a possible connection between activation of the adenylate cyclase system and coronavirus expression. Chromatographic analysis of cAMP-dependent protein kinase activity in cytosol extracts prepared from astrocytes or oligodendrocytes revealed that both glial cell types were deficient in protein kinase I, indicating that expression of coronavirus in differentiated cells was not contingent upon the presence of protein kinase I. However, treatment with N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (dbcAMP) resulted in a severalfold enhancement of the free regulatory subunit (RI) in oligodendrocytes but not in astrocytes. The RII subunit in both neural cell types was relatively unaffected. Rapid increase in RI due to dbcAMP treatment was correlated with inhibition of JHMV expression. Other differentiation inducers, including 8-Br cAMP and forskolin which, by contrast, caused a decrease in detectable RI, also blocked JHMV expression. This apparent anomaly can be attributed to an increased turnover of RI due to destabilization of the molecule which occurs upon site-specific binding of the cyclic nucleotides. On the basis of these observations, we conclude that the state of oligodendrocyte differentiation manifested with the modulation of RI regulates JHMV expression. The differentiation process did not affect either virus adsorption or sequestration but appeared to inhibit the expression of viral RNA and proteins, implying that replication was inhibited at some step between penetration and initiation of genomic functions, perhaps at the stage of uncoating. We therefore examined the possibility that protein kinases and phosphatases, which influence cellular regulation during cAMP-induced differentiation, may be responsible for the phenomenon of coronavirus suppression in oligodendrocytes. Evidence was obtained indicating that normal processing of the phosphorylated nucleocapsid protein is inhibited in differentiated oligodendrocytes, consistent with the notion that JHMV replication might be arrested during uncoating.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference77 articles.

1. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin;Bailey 0.;II. Pathology. J. Exp. Med.,1949

2. Developmental regulation of myelin basic protein in dispersed cultures;Barbarese E.;Proc. Natl. Acad. Sci. USA,1981

3. Adenylate cyclase activity as a function of forskolin concentration;Barber R.;J. Cyclic Nucleotide Res.,1985

4. In vivo and in vitro models of demyelinating disease. XI. Tropism and differentiation regulate the infectious process of coronavirus in primary explants of the rat CNS;Beushausen S.;Virology,1985

5. Protein synthesis in cells infected by murine hepatitis virus JHM and A59: tryptic peptide analysis;Bond C. W.;Arch. Virol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3