Induction of Caspase-Dependent Apoptosis in Cultured Rat Oligodendrocytes by Murine Coronavirus Is Mediated during Cell Entry and Does Not Require Virus Replication

Author:

Liu Yin1,Cai Yingyun1,Zhang Xuming1

Affiliation:

1. Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205

Abstract

ABSTRACT Murine coronavirus mouse hepatitis virus (MHV) causes demyelination of the central nervous system (CNS) in rats and mice. Apoptotic oligodendrocytes have been detected in the vicinity of the CNS demyelinating lesions in these animals. However, whether MHV can directly induce oligodendrocyte apoptosis has not been documented. Here, we established a rat oligodendrocyte culture that is morphologically and phenotypically indistinguishable from the primary rat oligodendrocytes. Using this culture, we showed that mature rat oligodendrocytes were permissive to MHV infection but did not support productive virus replication. Significantly, oligodendrocytes infected with both live and ultraviolet light-inactivated viruses underwent apoptosis to a similar extent, which was readily detectable at 24 h postinfection as revealed by apoptotic bodies and DNA fragmentation, indicating that MHV-induced apoptosis is mediated during the early stages of the virus life cycle and does not require virus replication. Prior treatment of cells with the lysosomotropic agents NH 4 Cl and chloroquine as well as the vacuolar proton pump-ATPase inhibitor bafilomycin A1, all of which block the acidification of the endosome, prevented oligodendrocytes from succumbing to apoptosis induced by MHV mutant OBLV60, which enters cells via endocytosis, indicating that fusion between the viral envelope and cell membranes triggers the apoptotic cascade. Treatment with the pan-caspase inhibitor Z-VAD-fmk blocked MHV-induced apoptosis, suggesting an involvement of the caspase-dependent pathway. Our results, thus, for the first time provide unequivocal evidence that infection of oligodendrocytes with MHV directly results in apoptosis. This finding provides an explanation for the destruction of oligodendrocytes and the damage of myelin sheath in MHV-infected CNS and suggests that oligodendrocyte apoptosis may be one of the underlying mechanisms for the pathogenesis of MHV-induced demyelinating diseases in animals.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3