Missense mutations in the VP1 gene of simian virus 40 that compensate for defects caused by deletions in the viral agnogene

Author:

Barkan A,Welch R C,Mertz J E

Abstract

Simian virus 40 mutants lacking sequences in the late leader region are viable but produce smaller plaques than does wild-type virus. Within three passages at low multiplicities of infection, virus stocks of several such mutants accumulated variants that synthesized an altered form of the major virion protein, VP1, having a slightly faster mobility in sodium dodecyl sulfate-polyacrylamide gels than did the wild-type protein. Because these variants overgrew the original virus stocks, we consider them to be second-site revertants. By construction and characterization of a series of recombinants, the second-site mutations were shown to map to at least two different regions of the VP1 gene. Nucleotide sequence analysis indicated that single-amino-acid changes were responsible for the rapid mobility of VP1. When combined in cis with either a wild-type or mutant leader region, these VP1 mutations sped up by 10 to 20 h the time course of accumulation of infectious progeny but not of viral DNA or VP1. LP1, the protein encoded by the agnogene, was shown previously to be necessary for the efficient transport of the virion proteins to the nucleus or for their efficient assembly with viral minichromosomes. The VP1 missense mutations reported here compensate for the lack of LP1 by facilitating this process. On the basis of these findings and findings reported previously by us and others, we hypothesize that LP1 facilitates the formation of infectious particles by inhibiting the polymerization of VP1 molecules until the time they interact with viral minichromosomes; the VP1 mutations reported here compensate for the loss of LP1 by lessening the potential of VP1 for self-polymerization.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3