Exposure to Cadmium Elevates Expression of Genes in the OxyR and OhrR Regulons and Induces Cross-Resistance to Peroxide Killing Treatment in Xanthomonas campestris

Author:

Banjerdkij Peerakan12,Vattanaviboon Paiboon1,Mongkolsuk Skorn13

Affiliation:

1. Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si

2. Postgraduate Education, Training and Research Program in Environmental Science, Technology and Management, Asian Institute of Technology

3. Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand

Abstract

ABSTRACT Cadmium is an important heavy metal pollutant. For this study, we investigated the effects of cadmium exposure on the oxidative stress responses of Xanthomonas campestris , a soil and plant pathogenic bacterium. The exposure of X. campestris to low concentrations of cadmium induces cross-protection against subsequent killing treatments with either H 2 O 2 or the organic hydroperoxide tert -butyl hydroperoxide (tBOOH), but not against the superoxide generator menadione. The cadmium-induced resistance to peroxides is due to the metal's ability to induce increased levels of peroxide stress protective enzymes such as alkyl hydroperoxide reductase (AhpC), monofunctional catalase (KatA), and organic hydroperoxide resistance protein (Ohr). Cadmium-induced resistance to H 2 O 2 is dependent on functional OxyR, a peroxide-sensing transcription regulator. Cadmium-induced resistance to tBOOH shows a more complex regulatory pattern. The inactivation of the two major sensor-regulators of organic hydroperoxide, OxyR and OhrR, only partially inhibited cadmium-induced protection against tBOOH, suggesting that these genes do have some role in the process. However, other, as yet unknown mechanisms are involved in inducible organic hydroperoxide protection. Furthermore, we show that the cadmium-induced peroxide stress response is mediated by the metal's ability to predominately cause an increase in intracellular concentrations of organic hydroperoxide and, in part, H 2 O 2 . Analyses of various mutants of peroxide-metabolizing enzymes suggested that this increase in organic hydroperoxide levels is, at least in part, responsible for cadmium toxicity in Xanthomonas .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3