Predicted Functions and Linkage Specificities of the Products of the Streptococcus pneumoniae Capsular Biosynthetic Loci

Author:

Aanensen David M.1,Mavroidi Angeliki1,Bentley Stephen D.2,Reeves Peter R.3,Spratt Brian G.1

Affiliation:

1. Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom

2. Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom

3. School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia

Abstract

ABSTRACT The sequences of the capsular biosynthetic ( cps ) loci of 90 serotypes of Streptococcus pneumoniae have recently been determined. Bioinformatic procedures were used to predict the general functions of 1,973 of the 1,999 gene products and to identify proteins within the same homology group, Pfam family, and CAZy glycosyltransferase family. Correlating cps gene content with the 54 known capsular polysaccharide (CPS) structures provided tentative assignments of the specific functions of the different homology groups of each functional class (regulatory proteins, enzymes for synthesis of CPS constituents, polymerases, flippases, initial sugar transferases, glycosyltransferases [GTs], phosphotransferases, acetyltransferases, and pyruvyltransferases). Assignment of the glycosidic linkages catalyzed by the 342 GTs (92 homology groups) is problematic, but tentative assignments could be made by using this large set of cps loci and CPS structures to correlate the presence of particular GTs with specific glycosidic linkages, by correlating inverting or retaining linkages in CPS repeat units with the inverting or retaining mechanisms of the GTs predicted from their CAZy family membership, and by comparing the CPS structures of serotypes that have very similar cps gene contents. These large-scale comparisons between structure and gene content assigned the linkages catalyzed by 72% of the GTs, and all linkages were assigned in 32 of the serotypes with known repeat unit structures. Clear examples where very similar initial sugar transferases or glycosyltransferases catalyze different linkages in different serotypes were also identified. These assignments should provide a stimulus for biochemical studies to evaluate the reactions that are proposed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3