Affiliation:
1. Cancer Research Institute
2. Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
3. Departamento de Patologia Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
Abstract
ABSTRACT
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep. The virus can induce tumors rapidly, and we previously found that the JSRV envelope protein (Env) functions as an oncogene, because it can transform mammalian and avian fibroblast cell lines. (N. Maeda, Proc. Natl. Acad. Sci. USA 98:4449-4454, 2001). The molecular mechanisms of JSRV Env transformation are of considerable interest. Several reports suggested that the phosphatidylinositol 3-kinase/Akt pathway is important for transformation of mammalian fibroblasts but not for chicken fibroblasts. In this study, we found that Akt/mTOR is involved in JSRV transformation of mouse NIH 3T3 fibroblasts, because treatment with the mTOR inhibitor rapamycin reduced transformation. We also found that H/N-Ras inhibitor FTI-277 and MEK1/2 inhibitors PD98059 and U0126 strongly inhibited JSRV transformation of NIH 3T3 fibroblasts, suggesting that the H/N-Ras-MEK-mitogen-activated protein kinase (MAPK) p44/42 pathway is necessary for the transformation. In RK3E epithelial cells, the MEK1/2 inhibitors also eliminated transformation, but FTI-277 only partially inhibited transformation. It was noteworthy that p38 MAPK inhibitors enhanced JSRV transformation in both fibroblasts and epithelial cells. Treatment of transformed cells with p38 inhibitors both increased levels of phospho-MEK1/2 and phospho-p44/42 and induced rapid enhancement of the transformed phenotype. Immunohistochemical staining of tumor tissues from naturally and experimentally induced OPA and naturally occurring enzootic nasal adenocarcinoma revealed strong activation of MAPK p44/42 in all cases examined. However, p38 activation was not generally observed. These results indicate that signaling through two pathways (in particular, H/N-Ras-MEK-MAPK and, to a lesser extent, Akt-mTOR) is important for JSRV-induced transformation and that p38 MAPK has a negative regulatory effect on transformation, perhaps via MEK1/2 and p44/42.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference42 articles.
1. Envelope-Induced Cell Transformation by Ovine Betaretroviruses
2. Aoki, M., E. Blazek, and P. K. Vogt. 2001. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl. Acad. Sci. USA98:136-141.
3. Ballif, B. A., and J. Blenis. 2001. Molecular mechanisms mediating mammalian mitogen-activated kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ.12:397-408.
4. Bellacosa, A., J. R. Testa, S. P. Staal, and P. N. Tsichlis. 1991. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science254:274-277.
5. Bellacosa, A., J. R. Testa, R. Moore, and L. Larue. 2004. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol. Ther.3:268-275.