Regulatory regions that control expression of two chloramphenicol-inducible cat genes cloned in Bacillus subtilis

Author:

Duvall E J,Williams D M,Mongkolsuk S,Lovett P S

Abstract

Plasmid pPL603 is a promoter cloning vector for Bacillus subtilis and consists of a 1.1-kilobase fragment of Bacillus pumilus DNA inserted between the EcoRI and BamHI sites of pUB110. The gene cat-86, specifying chloramphenicol-inducible chloramphenicol acetyltransferase, is located on the 1.1-kilobase cloned DNA. When pPL603 is present in B. subtilis, cat-86 is unexpressed during vegetative growth but expressed during sporulation. The regulation of cat-86 in pPL603 is due to sequences within two restriction fragments, designated P1 and R1, that precede the main coding portion of the gene. The P1 fragment promotes transcription of cat-86 only during sporulation, whereas the adjacent R1 fragment lacks promoter function but contains sequences essential to chloramphenicol inducibility. A second B. pumilus gene, cat-66, was cloned in B. subtilis and is expressed throughout the vegetative growth and sporulation cycle. The cat-66 coding region is preceded by two adjacent restriction fragments designated as P2 and R2. P1 and P2 are identical in size and share 95% conservation of base sequence. R1 and R2 are also identical in size and share 91% conservation of base sequence. Fragment substitution experiments demonstrate that R2 can functionally replace R1. The substitution of P2 for P1 promotes cat-86 expression throughout vegetative growth and sporulation. Analysis of a derivative of pPL603 in which P2 has replaced P1 demonstrates that P2 promotes transcription of cat-86 during vegetative growth and that P2 contains the start site for transcription of cat-86. Thus, P1 and P2 differ strikingly in vegetative promoter function, yet they differ by single-base substitutions at only 11 positions of 203.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3