Affiliation:
1. Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
Abstract
ABSTRACT
Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of
Typha latifolia
,
Phragmites australis
,
Peltandra virginica
, and
Lythrum salicaria
. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (
mcrA
). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献