Assembly of root-associated N2O-reducing communities of annual crops is governed by selection for nosZ clade I over clade II

Author:

Graf Daniel R H1,Jones Christopher M1ORCID,Zhao Ming2,Hallin Sara1ORCID

Affiliation:

1. Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences , Box 7026, 75007 Uppsala, Sweden

2. Department of Plant Biology, Swedish University of Agricultural Science , Box 7080, 75007 Uppsala, Sweden

Abstract

Abstract The rhizosphere is a hotspot for denitrification. The nitrous oxide (N2O) reductase among denitrifiers and nondenitrifying N2O reducers is the only known N2O sink in the biosphere. We hypothesized that the composition of root-associated N2O-reducing communities when establishing on annual crops depend on soil type and plant species, but that assembly processes are independent of these factors and differ between nosZ clades I and II. Using a pot experiment with barley and sunflower and two soils, we analyzed the abundance, composition, and diversity of soil and root-associated N2O reducing communities by qPCR and amplicon sequencing of nosZ. Clade I was more abundant on roots compared to soil, while clade II showed the opposite. In barley, this pattern coincided with N2O availability, determined as potential N2O production rates, but for sunflower no N2O production was detected in the root compartment. Root and soil nosZ communities differed in composition and phylogeny-based community analyses indicated that assembly of root-associated N2O reducers was driven by the interaction between plant and soil type, with inferred competition being more influential than habitat selection. Selection between clades I and II in the root/soil interface is suggested, which may have functional consequences since most clade I microorganisms can produce N2O.

Funder

Foundation in Memory of Oscar and Lili Lamm

Swedish Research Council

Swedish University of Agricultural Sciences

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3