Affiliation:
1. Department of Medicine, University of British Columbia, Vancouver Hospital Health Sciences Centre, Canada.
Abstract
A set of universal degenerate primers which amplified, by PCR, a 600-bp oligomer encoding a portion of the 60-kDa heat shock protein (HSP60) of both Staphylococcus aureus and Staphylococcus epidermidis were developed. However, when used as a DNA probe, the 600-bp PCR product generated from S. epidermidis failed to cross-hybridize under high-stringency conditions with the genomic DNA of S. aureus and vice versa. To investigate whether species-specific sequences might exist within the highly conserved HSP60 genes among different staphylococci, digoxigenin-labelled HSP60 probes generated by the degenerate HSP60 primers were prepared from the six most commonly isolated Staphylococcus species (S. aureus 8325-4, S. epidermidis 9759, S. haemolyticus ATCC 29970, S. schleiferi ATCC 43808, S. saprophyticus KL122, and S. lugdunensis CRSN 850412). These probes were used for dot blot hybridization with genomic DNA of 58 reference and clinical isolates of Staphylococcus and non-Staphylococcus species. These six Staphylococcus species HSP60 probes correctly identified the entire set of staphylococcal isolates. The species specificity of these HSP60 probes was further demonstrated by dot blot hybridization with PCR-amplified DNA from mixed cultures of different Staphylococcus species and by the partial DNA sequences of these probes. In addition, sequence homology searches of the NCBI BLAST databases with these partial HSP60 DNA sequences yielded the highest matching scores for both S. epidermidis and S. aureus with the corresponding species-specified probes. Finally, the HSP60 degenerate primers were shown to amplify an anticipated 600-bp PCR product from all 29 Staphylococcus species and from all but 2 of 30 other microbial species, including various gram-positive and gram-negative bacteria, mycobacteria, and fungi. These preliminary data suggest the presence of species-specific sequence variation within the highly conserved HSP60 genes of staphylococci. Further work is required to determine whether these degenerate HSP60 primers may be exploited for species-specific microbic identification and phylogenetic investigation of staphylococci and perhaps other microorganisms in general.
Publisher
American Society for Microbiology
Cited by
216 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献