Cooperation and cheating orchestrateVibrioassemblages and polymicrobial synergy in oysters infected with OsHV-1 virus

Author:

Oyanedel Daniel,Lagorce Arnaud,Bruto Maxime,Haffner Philippe,Morot Amandine,Dorant Yann,de La Forest Divonne Sébastien,Delavat François,Inguimbert Nicolas,Montagnani Caroline,Morga Benjamin,Toulza Eve,Chaparro Cristian,Escoubas Jean-Michel,Labreuche Yannick,Gueguen Yannick,Vidal-Dupiol Jeremie,de Lorgeril Julien,Petton Bruno,Degremont Lionel,Tourbiez Delphine,Pimparé Léa-Lou,Leroy Marc,Romatif Océane,Pouzadoux Juliette,Mitta Guillaume,Roux Frédérique Le,Charrière Guillaume M.,Travers Marie-AgnèsORCID,Destoumieux-Garzón DelphineORCID

Abstract

AbstractPolymicrobial diseases significantly impact the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease that impacts oyster production and is prevalent worldwide. Analysis of POMS-infected oysters on the French North Atlantic coast revealed that the disease involves co-infection with the endemic ostreid herpesvirus 1 (OsHV-1) and virulent bacterial species such asVibrio crassostreae. However, it is unknown whether consistentVibriopopulations are associated with POMS in different regions, howVibriocontribute to POMS, and how they interact with the OsHV-1 virus during pathogenesis.We resolved theVibriopopulation structure in oysters from a Mediterranean ecosystem and investigated their functions in POMS development. We find thatVibrio harveyiandVibrio rotiferianusare the predominant species found in OsHV-1-diseased oysters and show that OsHV-1 is necessary to reproduce the partition of theVibriocommunity observed in the field. By characterizing the interspecific interactions between OsHV-1,V. harveyiandV. rotiferianus, we find that onlyV. harveyisynergizes with OsHV-1. When co-infected, OsHV-1 andV. harveyibehave cooperatively by promoting mutual growth and accelerating oyster death.V. harveyishowed high virulence potential in oysters and dampened host cellular defenses, making oysters a more favorable niche for microbe colonization. We next investigated the interactions underlying the co-occurrence of diverseVibriospecies in diseased oysters. We found thatV. harveyiharbors genes responsible for the biosynthesis and uptake of a key siderophore called vibrioferrin. This important resource promotes the growth ofV. rotiferianus, a cheater that efficiently colonizes oysters during POMS without costly investment in host manipulation nor metabolite sharing.By connecting field-based approaches, laboratory infection assays and functional genomics, we have uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We showed that cooperative behaviors contribute to synergy between bacterial and viral co-infecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling such behaviors or countering their effects opens new avenues for mitigating polymicrobial diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3