Detection of Mycobacterium tuberculosis by PCR amplification with pan-Mycobacterium primers and hybridization to an M. tuberculosis-specific probe

Author:

Tevere V J1,Hewitt P L1,Dare A1,Hocknell P1,Keen A1,Spadoro J P1,Young K K1

Affiliation:

1. Roche Molecular Systems, Inc., Branchburg, New Jersey, USA.

Abstract

Nucleic acid amplification techniques such as the PCR are very useful in the rapid diagnosis of infections by Mycobacterium tuberculosis. However, recent studies have shown that the accuracy of results can vary widely when tests are performed with nonstandardized reagents. We have developed a PCR assay for the detection of M. tuberculosis that is both rapid and accurate. The assay reagents are standardized and quality controlled. False-positive results due to carryover contamination are prevented by the incorporation of dUTP coupled with uracil-N-glycosylase restriction. This assay also employs pan-Mycobacterium amplification primers, allowing for flexibility in the mycobacterial species that can be identified from a single amplification reaction. The amplification is very sensitive; amplification products generated from as few as three bacteria can be detected by agarose gel electrophoresis. DNAs isolated from 33 of 34 mycobacterial species tested were amplified efficiently. Only DNA from Mycobacterium simiae did not amplify. The amplification is also very specific. Amplification products were generated only from the DNAs of bacteria in closely related genera such as Corynebacterium. The nonmycobacterial amplicons do not pose a problem, as they do not hybridize to mycobacterium-specific probes. Hybridization of amplicons to an M. tuberculosis-specific probe allows for the unambiguous identification of M. tuberculosis complex organisms. The clinical performance of this PCR assay was evaluated against that of culture in 662 respiratory specimens. Sensitivities of 100 and 73.1% were obtained from smear-positive and -negative respiratory specimens, respectively. The corresponding specificities were 100 and 99.8%. The high sensitivity and specificity, coupled with the potential for detecting a wide range of mycobacteria, make this assay a useful tool in the clinical management of mycobacterial infections.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3