The RAM Network in Pathogenic Fungi

Author:

Saputo Sarah1,Chabrier-Rosello Yeissa2,Luca Francis C.3,Kumar Anuj4,Krysan Damian J.12

Affiliation:

1. Departments of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

2. Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

3. Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

4. Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT The r egulation of A ce2 and m orphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae , we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans , Candida glabrata , Cryptococcus neoformans , Aspergillus fumigatus , and Pneumocystis spp.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3