Affiliation:
1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
2. College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
3. Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
Abstract
The MOR (Morphogenesis-related NDR kinase) signaling network, initially identified in yeast, exhibits evolutionary conservation across eukaryotes and plays indispensable roles in the normal growth and development of these organisms. However, the functional role of this network and its associated genes in maize (Zea mays) has remained elusive until now. In this study, we identified a total of 19 maize MOR signaling network genes, and subsequent co-expression analysis revealed that 12 of these genes exhibited stronger associations with each other, suggesting their potential collective regulation of maize growth and development. Further analysis revealed significant co-expression between genes involved in the MOR signaling network and several genes related to cold tolerance. All MOR signaling network genes exhibited significant co-expression with COLD1 (Chilling tolerance divergence1), a pivotal gene involved in the perception of cold stimuli, suggesting that COLD1 may directly transmit cold stress signals to MOR signaling network genes subsequent to the detection of a cold stimulus. The findings indicated that the MOR signaling network may play a crucial role in modulating cold tolerance in maize by establishing an intricate relationship with key cold tolerance genes, such as COLD1. Under low-temperature stress, the expression levels of certain MOR signaling network genes were influenced, with a significant up-regulation observed in Zm00001d010720 and a notable down-regulation observed in Zm00001d049496, indicating that cold stress regulated the MOR signaling network. We identified and analyzed a mutant of Zm00001d010720, which showed a higher sensitivity to cold stress, thereby implicating its involvement in the regulation of cold stress in maize. These findings suggested that the relevant components of the MOR signaling network are also conserved in maize and this signaling network plays a vital role in modulating the cold tolerance of maize. This study offered valuable genetic resources for enhancing the cold tolerance of maize.
Funder
Sichuan innovation team of national modern agricultural industry technology system
National Natural Science Foundation of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献