DNA Adenine Methyltransferase Influences the Virulence of Aeromonas hydrophila

Author:

Erova Tatiana E.1,Pillai Lakshmi1,Fadl Amin A.1,Sha Jian1,Wang Shaofei1,Galindo Cristi L.1,Chopra Ashok K.1

Affiliation:

1. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070

Abstract

ABSTRACT Among the various virulence factors produced by Aeromonas hydrophila , a type II secretion system (T2SS)-secreted cytotoxic enterotoxin (Act) and the T3SS are crucial in the pathogenesis of Aeromonas -associated infections. Our laboratory molecularly characterized both Act and the T3SS from a diarrheal isolate, SSU of A. hydrophila , and defined the role of some regulatory genes in modulating the biological effects of Act. In this study, we cloned, sequenced, and expressed the DNA adenine methyltransferase gene of A. hydrophila SSU ( dam AhSSU ) in a T7 promoter-based vector system using Escherichia coli ER2566 as a host strain, which could alter the virulence potential of A. hydrophila . Recombinant Dam, designated as M.AhySSUDam, was produced as a histidine-tagged fusion protein and purified from an E. coli cell lysate using nickel affinity chromatography. The purified Dam had methyltransferase activity, based on its ability to transfer a methyl group from S -adenosyl- l -methionine to N 6 -methyladenine-free lambda DNA and to protect methylated lambda DNA from digestion with DpnII but not against the DpnI restriction enzyme. The dam gene was essential for the viability of the bacterium, and overproduction of Dam in A. hydrophila SSU, using an arabinose-inducible, P BAD promoter-based system, reduced the virulence of this pathogen. Specifically, overproduction of M.AhySSUDam decreased the motility of the bacterium by 58%. Likewise, the T3SS-associated cytotoxicity, as measured by the release of lactate dehydrogenase enzyme in murine macrophages infected with the Dam-overproducing strain, was diminished by 55% compared to that of a control A. hydrophila SSU strain harboring the pBAD vector alone. On the contrary, cytotoxic and hemolytic activities associated with Act as well as the protease activity in the culture supernatant of a Dam-overproducing strain were increased by 10-, 3-, and 2.4-fold, respectively, compared to those of the control A. hydrophila SSU strain. The Dam-overproducing strain was not lethal to mice (100% survival) when given by the intraperitoneal route at a dose twice that of the 50% lethal dose, which within 2 to 3 days killed 100% of the animals inoculated with the A. hydrophila control strain. Taken together, our data indicated alteration of A. hydrophila virulence by overproduction of Dam.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3