In Vitro Evaluation of Antibiotic Synergy for Polymyxin B-Resistant Carbapenemase-Producing Klebsiella pneumoniae

Author:

Elemam Azza1,Rahimian Joseph1,Doymaz Mehmet2

Affiliation:

1. Departments of Infectious Diseases

2. Pathology/Laboratories, Saint Vincent Medical Center, New York, New York 10011

Abstract

ABSTRACT Since carbapenemase-producing Klebsiella pneumoniae strains were first reported in North Carolina, these highly resistant organisms have been isolated with increasing frequency, especially in the New York City area. Polymyxin B is one of the few antimicrobials that retain reliable activity against these organisms. However, polymyxin B MICs are elevated against K. pneumoniae isolates with increasing frequency, leaving clinicians with few therapeutic options. We investigated several antimicrobial agents for potential synergy with polymyxin B against 12 clinical strains of carbapenemase-producing K. pneumoniae. A broth microdilution assay using a 96-well plate was developed in which graded dilutions of polymyxin B and the study drug were incubated with resistant isolates in a checkerboard pattern. Polymyxin B was studied in combination with cefazolin, ceftriaxone, cefepime, imipenem, gentamicin, tigecycline, doxycycline, and rifampin. All K. pneumoniae strains tested positive for K. pneumoniae carbapenemase (KPC) genes by real-time PCR and had elevated polymyxin B MIC values ranging from 16 to 128 μg/ml. Synergy was observed with the combination of polymyxin B and rifampin as well as with polymyxin B and doxycycline, resulting in at least a 4-fold decrease in the polymyxin B MIC. For both combinations, this effect occurred at physiologically achievable concentrations. Less pronounced synergy was noted with tigecycline and polymyxin B. No synergy was observed at physiologic concentrations with the other antimicrobials studied. These results suggest that rifampin, doxycycline, and tigecycline may be useful additions to polymyxin B in the treatment of infections caused by highly resistant carbapenemase-producing K. pneumoniae . Further studies are warranted to determine if these in vitro findings translate into clinical efficacy.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3