Abstract
AbstractThe increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. Antibiotic adjuvant strategy is a more effective and economical approach to expand the lifespan of currently used antibiotics. Herein, we uncover that alcohol-abuse drug disulfiram (DSF) and derivatives thereof are potent antibiotic adjuvants, which dramatically potentiate the antibacterial activity of carbapenems and colistin against New Delhi metallo-β-lactamase (NDM)- and mobilized colistin resistance (MCR)-expressing Gram-negative pathogens, respectively. Mechanistic studies indicate that DSF improves meropenem efficacy by specifically inhibiting NDM activity. Moreover, the robust potentiation of DSF to colistin is due to its ability to exacerbate the membrane-damaging effects of colistin and disrupt bacterial metabolism. Notably, the passage and conjugation assays reveal that DSF minimizes the evolution and spread of meropenem and colistin resistance in clinical pathogens. Finally, their synergistic efficacy in animal models was evaluated and DSF-colistin/meropenem combination could effectively treat MDR bacterial infections in vivo. Taken together, our works demonstrate that DSF and its derivatives are versatile and potent colistin and carbapenems adjuvants, opening a new horizon for the treatment of difficult-to-treat infections.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献