Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine

Author:

Smail E H1,Briza P1,Panagos A1,Berenfeld L1

Affiliation:

1. Evans Memorial Department of Clinical Research, Boston University Medical Center Hospital, Massachusetts 02118, USA.

Abstract

Several clinical and laboratory isolates of Candida albicans have a natural blue surface fluorescence when cultured and observed with sensitive optics. The localization and color of the fluorescence are similar to those of the natural fluorescence of sporulated Saccharomyces cerevisiae which is caused by the generation and surface deposition of the cross-linking amino acid dityrosine. In S. cerevisiae, dityrosine production results from the direct action of at least two genes and is responsible for resistance of the ascospores to lytic enzymes and physicochemical trauma. Among the criteria for the identification of dityrosine is pH sensitivity of the fluorescence intensity and a highly characteristic shift of the fluorescence excitation maximum with a change in pH. Video microscopy of whole Candida organisms revealed the characteristic dityrosine intensity maximum at pH approximately 10 and the intensity minimum at pH approximately 2. Separation of an acid hydrolysate of Candida cell walls by reverse-phase high-performance liquid chromatography revealed a fluorescence peak that coelutes with the reagent dityrosine. At pH approximately 10, this peak has a fluorescence excitation maximum of 320 to 325 nm, while at pH approximately 2, the excitation maximum is 285 to 290 nm. This excitation maximum shift and the observed emission maximum of approximately 410 nm are characteristic of dityrosine. Two separate strains of C. albicans were injected intraperitoneally into mice and harvested at 24 h. Blue surface fluorescence was observed, suggesting that dityrosine generation occurs in vivo as well as in vitro. This is the first report of the presence of dityrosine in a human fungal pathogen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference47 articles.

1. Dityrosine: in vitro production and characterization;Amado R.;Methods Enzymol.,1984

2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

3. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression of Saccharomyces cerevisiae;Au-Young J.;Mol. Microbiol.,1990

4. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989;Banerjee S. N.;Am. J. Med.,1991

5. Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall ~-glucan synthesis;Boone C.;J. Bacteriol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3