Enhancement of in vitro transcription by addition of cloned, overexpressed major sigma factor of Chlamydia psittaci 6BC

Author:

Douglas A L1,Saxena N K1,Hatch T P1

Affiliation:

1. Department of Microbiology and Immunology, University of Tennessee, Memphis 38163.

Abstract

Obligate parasitic bacteria of the genus Chlamydia possess a developmental cycle that takes place entirely within eucaryotic host cells. Because standard methods of genetic analysis are not available for chlamydiae, an in vitro transcription system has been developed to elucidate the mechanisms by which chlamydiae regulate gene expression. The in vitro system is specific for chlamydial promoters but is inefficient, presumably because the RNA polymerase is not saturated with sigma factor. Therefore, we prepared recombinant Chlamydia psittaci 6BC major sigma factor to enhance transcription in the in vitro system. The gene encoding the major sigma factor (sigA) was identified by using an rpoD box oligonucleotide and was subsequently cloned and sequenced. It was found to encode a potential 571-amino-acid protein (sigma 66) that is greater than 90% identical to the previously identified major sigma factors from the L2 and MoPn strains of Chlamydia trachomatis. sigA was recloned into a T7 RNA polymerase expression system to produce large quantities of sigma 66 in Escherichia coli. Overexpressed sigma 66 was identified by immunoblot by using monoclonal antibodies 2G10 (reactive) and 2F8 (nonreactive) generated against E. coli sigma 70. After purification by polyacrylamide gel electrophoresis, the recombinant protein was found to stimulate, by 10-fold or more, promoter-specific in vitro transcription by C. psittaci 6BC and C. trachomatis L2 RNA polymerases. Transcription was dependent on added chlamydial sigma 66, rather than on potentially contaminating E. coli sigma 70 or other fortuitous activators, since the monoclonal antibody 2G10, and not 2F8, inhibited transcription initiation. Recombinant omega(66) had no effect on transcription by E. coli core polymerase. The addition of recombinant omega(66) to the in vitro system should be useful for distinguishing omega(66)-dependent transcription of developmentally regulated chlamydial genes from omega(66)-independent transcription.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3