Affiliation:
1. Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia 65212.
Abstract
The fepA-entD and fes-entF operons in the enterobactin synthesis and transport system are divergently transcribed from overlapping promoters, and both are inhibited by the Fur repressor protein under iron-replete conditions. A plasmid harboring divergent fepA'-phoA and fes-entF'-'lacZ fusions, both under the control of this bidirectional regulatory region, was constructed for the purpose of monitoring changes in expression of the two operons simultaneously. Deletion analysis, site-directed mutagenesis, and primer extension were employed to define both a single promoter governing the expression of fes-entF and two tandemly arranged promoters giving rise to the opposing fepA-entD transcript. A single Fur-binding site that coordinately regulates the expression of all transcripts emanating from this control region was identified by in vitro protection from DNase I nicking. The substitution of one base pair in the Fur recognition sequence relieved Fur repression but did not change the in vitro affinity of Fur for its binding site. Additional mutations in a limited region outside of the promoter determinants for either transcript inhibited expression of both fes and fepA. These observations suggest a mechanism of Fur-mediated regulation in this compact control region that may involve other regulatory components.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献