A critical role for iron and zinc homeostatic systems in the evolutionary adaptation of Escherichia coli to metal restriction

Author:

Paterson Joy R.1,Wadsworth Joshua M.1,Hu Ping2,Sharples Gary J.1ORCID

Affiliation:

1. Department of Biosciences, Durham University, Durham, UK

2. Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040, USA

Abstract

Host nutritional immunity utilizes metal deprivation to help prevent microbial infection. To investigate bacterial adaptation to such restrictive conditions, we conducted experimental evolution with two metal sequestering agents. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentamethylene phosphonic acid (DTPMP) were selected as ligands because they differentially affect cellular levels of iron, manganese and zinc in Escherichia coli . Mutants of E. coli strain BW25113 were isolated after cultivation at sub-minimum inhibitory concentration (MIC) chelant levels and genetic changes potentially responsible for tolerance were identified by whole-genome sequencing. In EDTA-selected strains, mutations in the promoter region of yeiR resulted in elevated gene expression. The yeiR product, a zinc-specific metallochaperone, was confirmed to be primarily responsible for EDTA resistance. Similarly, in two of the DTPMP-selected strains, a promoter mutation increased expression of the fepA-entD operon, which encodes components of the ferric-enterobactin uptake pathway. However, in this case improved DTPMP tolerance was only detectable following overexpression of FepA or EntD in trans. Additional mutations in the cadC gene product, an acid-response regulator, preserved the neutrality of the growth medium by constitutively activating expression of the cadAB regulon. This study uncovers specific resistance mechanisms for zinc and iron starvation that could emerge by selection against host nutritional immunity or competition with heterologous metallophores. It also provides insight into the specific metals affected by these two widely used chelators critical for their antibacterial mode of action.

Funder

Biotechnology and Biological Sciences Research Council

Procter and Gamble

Publisher

Microbiology Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3