Roles of the Essential Protein FtsA in Cell Growth and Division in Streptococcus pneumoniae

Author:

Mura Andrea12ORCID,Fadda Daniela1,Perez Amilcar J.3,Danforth Madeline L.3,Musu Daniela1,Rico Ana Isabel4ORCID,Krupka Marcin4,Denapaite Dalia5,Tsui Ho-Ching T.3,Winkler Malcolm E.3,Branny Pavel2,Vicente Miguel4ORCID,Margolin William6ORCID,Massidda Orietta1ORCID

Affiliation:

1. Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, Italy

2. Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Cell Signaling, Prague, Czech Republic

3. Department of Biology, Indiana University at Bloomington, Bloomington, Indiana, USA

4. Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain

5. Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany

6. Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA

Abstract

ABSTRACT Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli, such as Escherichia coli and Bacillus subtilis . In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis but not peripheral PG synthesis; hence, inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here, we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in the delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF , which in B. subtilis are synthetically lethal with ftsA , resulted in enlarged and elongated cells with multiple FtsZ rings, with deletion of sepF mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z-ring assembly. The overproduction of FtsA stimulates septation and suppresses the cell division defects caused by the deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae , both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell. IMPORTANCE Streptococcus pneumoniae (pneumococcus) is a clinically important human pathogen for which more therapies against unexploited essential targets, like cell growth and division proteins, are needed. Pneumococcus is an ovoid-shaped Gram-positive bacterium with cell growth and division properties that have important distinctions from those of rod-shaped bacteria. Gaining insights into these processes can thus provide valuable information to develop novel antimicrobials. Whereas rods use distinctly localized protein machines at different cellular locations to synthesize peripheral and septal peptidoglycans, we present evidence that S. pneumoniae organizes these two machines at a single location in the middle of dividing cells. Here, we focus on the properties of the actin-like protein FtsA as an essential orchestrator of peripheral and septal growth in this bacterium.

Funder

Autonomous Region of Sardinia

Czech Science Foundation

Spanish Ministerio de Ciencia e Inovacion

HHS | National Institutes of Health

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3