Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell ofStreptococcus pneumoniae

Author:

Perez Amilcar J.ORCID,Lamanna Melissa M.ORCID,Bruce Kevin E.ORCID,Touraev Marc A.,Page Julia E.ORCID,Shaw Sidney L.ORCID,Tsui Ho-Ching TiffanyORCID,Winkler Malcolm E.ORCID

Abstract

ABSTRACTOvoid-shaped bacteria, such asStreptococcus pneumoniae(pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.SIGNIFICANCEThese results demonstrate that unlike in rod-shaped bacteria, the core elongasome ofS. pneumoniaeexhibits zonal, circumferential motion. This motion is independent of FtsZ treadmilling or the presence of MreB filaments and is separate from the circumferential motion of the septal PG synthase that closes the septal annulus. Also unlike in rod-shaped bacteria, a Class A PBP moves processively at midcell, distinctly from components of the core PG elongasome or septal PG synthase. Thus, processive, circumferential motion in pneumococcal cells follows spatially separate linear tracks that may reflect a common ordered structure in the existing peptidoglycan itself. In contrast, the MpgA muramidase displays a different kind of subdiffusive motion that is largely confined to midcell by an unknown mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3