A Phosphatidylinositol 3-Kinase Docking Site in the Cytoplasmic Tail of the Jaagsiekte Sheep Retrovirus Transmembrane Protein Is Essential for Envelope-Induced Transformation of NIH 3T3 Cells

Author:

Palmarini Massimo1,Maeda Naoyoshi2,Murgia Claudio1,De-Fraja Claudio3,Hofacre Andrew2,Fan Hung2

Affiliation:

1. Department of Medical Microbiology and Parasitology, College of Veterinary Medicine, University of Georgia, Athens, Georgia,1 and

2. Department of Molecular Biology and Biochemistry and Cancer Research Institute2 and

3. Department of Physiology and Biophysics,3 University of California, Irvine, California

Abstract

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a transmissible lung cancer of sheep known as ovine pulmonary carcinoma. Recently, we have found that the expression of the JSRV envelope (Env) is sufficient to transform mouse NIH 3T3 cells in classical transformation assays. To further investigate the mechanisms of JSRV oncogenesis, we generated a series of envelope chimeras between JSRV and the JSRV-related endogenous retroviruses of sheep (enJSRVs) and assessed them in transformation assays. Chimeras containing the exogenous JSRV SU region and the enJSRV TM region were unable to transform NIH 3T3 cells. Additional chimeras containing only the carboxy-terminal portion of TM (a region that we previously identified as VR3) of the endogenous envelope with SU and the remaining portion of TM from the exogenous JSRV were also unable to transform NIH 3T3 cells. The VR3 region includes the putative membrane-spanning region and cytoplasmic tail of the JSRV TM glycoprotein; this suggested that the cytoplasmic tail of the JSRV Env mediates transformation, possibly via a cell signaling mechanism. Mutations Y590 and M593 in the cytoplasmic tail of the JSRV envelope were sufficient to inhibit the transforming abilities of these constructs. Y590 and M593 are part of a Y-X-X-M motif that is recognized by the phosphatidylinositol 3-kinase (PI-3K). PI-3K initiates a cell signaling pathway that inhibits apoptosis and is required for a number of mitogens during the G 1 -to-S-phase transition of the cell cycle. PI-3K activates Akt by phosphorylation of threonine 308 and serine 473. We detected by Western blot analysis phosphorylated Akt in serum-starved MP1 cells (NIH 3T3 cells transformed by JSRV) but not in the parental NIH 3T3 cells. These data indicate that the cytoplasmic tail of the JSRV TM is necessary for cell transformation and suggest a new mechanism of retroviral transformation. In addition, the ability to dissociate the function of the JSRV envelope to mediate viral entry from its transforming capacity has direct relevance for the design of JSRV-based vectors that target the differentiated epithelial cells of the lungs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3