Mutagenesis of the Dengue Virus Type 2 NS3 Protein within and outside Helicase Motifs: Effects on Enzyme Activity and Virus Replication

Author:

Matusan Anita E.1,Pryor Melinda J.1,Davidson Andrew D.1,Wright Peter J.1

Affiliation:

1. Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia

Abstract

ABSTRACT The protein NS3 of Dengue virus type 2 (DEN-2) is the second largest nonstructural protein specified by the virus and is known to possess multiple enzymatic activities, including a serine proteinase located in the N-terminal region and an NTPase-helicase in the remaining 70% of the protein. The latter region has seven conserved helicase motifs found in all members of the family Flaviviridae . DEN-2 NS3 lacking the proteinase region was synthesized as a fusion protein with glutathione S- transferase in Escherichia coli. The effects of 10 mutations on ATPase and RNA helicase activity were examined. Residues at four sites within enzyme motifs I, II, and VI were substituted, and six sites outside motifs were altered by clustered charged-to-alanine mutagenesis. The mutations were also tested for their effects on virus replication by incorporation into genomic-length cDNA. Two mutations, both in motif I (G198A and K199A) abolished both ATPase and helicase activity. Two further mutations, one in motif VI (R457A,R458A) and the other a clustered charged-to-alanine substitution at R 376 KNGK 380 , abolished helicase activity only. No virus was detected for any mutation which prevented helicase activity, demonstrating the requirement of this enzyme for virus replication. The remaining six mutations resulted in various levels of enzyme activities, and four permitted virus replication. For the two nonreplicating viruses encoding clustered changes at R 184 KR 186 and D 436 GEE 439 , we propose that the substituted residues are surface located and that the viruses are defective through altered interaction of NS3 with other components of the viral replication complex. Two of the replicating viruses displayed a temperature-sensitive phenotype. One contained a clustered mutation at D 334 EE 336 and grew too poorly for further characterization. However, virus with an M283F substitution in motif II was examined in a temperature shift experiment (33 to 37°C) and showed reduced RNA synthesis at the higher temperature.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3