Impact of bound ssRNA length on allostery in the Dengue Virus NS3 helicase

Author:

Amrein Fernando12,Sarto Carolina32,Cababie Leila A1,Gonzalez Flecha F Luis14ORCID,Kaufman Sergio B14ORCID,Arrar Mehrnoosh2ORCID

Affiliation:

1. Universidad de Buenos Aires, CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) , Junín 956, CABA 1113, Argentina

2. Universidad de Buenos Aires, CONICET, Instituto de Cálculo , Intendente Guiraldes 2160, CABA 1428, Argentina

3. Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) , Intendente Guiraldes 2160, CABA 1428, Argentina

4. Universidad de Buenos Aires, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica , Junín 956, CABA 1113, Argentina

Abstract

Abstract The presence of ATP is known to stimulate helicase activity of the Dengue Virus Non-structural protein 3 helicase (NS3h), and the presence of RNA stimulates NS3h ATPase activity, however this coupling is still mechanistically unclear. Here we use atomistic models and molecular dynamics simulations to evaluate the single-stranded RNA (ssRNA)-length dependence of the NS3h–ssRNA binding affinity and its modulation by bound ATP. Considering complexes with 7, 11, 16 and 26 nucleotides (nts), we observe that both the binding affinity and its modulation by bound ATP are augmented with increased ssRNA lengths. In models with at least 11 nts bound, the binding of ATP results in a shift from a tightly bound to a weakly bound state. We find that the weakly bound state persists during both the ADP-Pi- and ADP-bound stages of the catalytic cycle. We obtain the equilibrium association constants for NS3h binding to an ssRNA 10-mer in vitro, both in the absence and presence of ADP, which further support the alternation between tightly and weakly bound states during the catalytic cycle. The length of bound ssRNA is critical for understanding the NS3h–RNA interaction as well as how it is modulated during the catalytic cycle.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3