rpoB -Based Microbial Community Analysis Avoids Limitations Inherent in 16S rRNA Gene Intraspecies Heterogeneity

Author:

Dahllöf Ingela1,Baillie Harriet1,Kjelleberg Staffan1

Affiliation:

1. School of Microbiology and Immunology and Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia

Abstract

ABSTRACT Contemporary microbial community analysis frequently involves PCR-amplified sequences of the 16S rRNA gene (rDNA). However, this technology carries the inherent problem of heterogeneity between copies of the 16S rDNA in many species. As an alternative to 16S rDNA sequences in community analysis, we employed the gene for the RNA polymerase beta subunit ( rpoB ), which appears to exist in one copy only in bacteria. In the present study, the frequency of 16S rDNA heterogeneity in bacteria isolated from the marine environment was assessed using bacterial isolates from the red alga Delisea pulchra and from the surface of a marine rock. Ten strains commonly used in our laboratory were also assessed for the degree of heterogeneity between the copies of 16S rDNA and were used to illustrate the effect of this heterogeneity on microbial community pattern analysis. The rock isolates and the laboratory strains were also used to confirm nonheterogeneity of rpoB , as well as to investigate the versatility of the primers. In addition, a comparison between 16S rDNA and rpoB PCR-DGGE (denaturing gradient gel electrophoresis)-based community analyses was performed using a DNA mixture of nine isolates from D. pulchra . Eight out of 14 isolates from D. pulchra , all rock isolates, and 6 of 10 laboratory strains displayed multiple bands for 16S rDNA when analyzed by DGGE. There was no indication of heterogeneity for either the rock isolates or the laboratory strains when rpoB was used for PCR-DGGE analysis. Microbial community pattern analysis using 16S rDNA PCR-DGGE showed an overestimation of the number of laboratory strains in the sample, while some strains were not represented. Therefore, the 16S rDNA PCR-DGGE-based community analysis was proven to be severely limited by 16S rDNA heterogeneity. The mixture of isolates from D. pulchra proved to be more accurately described using rpoB , compared to the 16S rDNA-based PCR-DGGE.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3