Studies of the Mechanism of Transactivation of the Adeno-Associated Virus p19 Promoter by Rep Protein

Author:

Lackner Daniel F.1,Muzyczka Nicholas1

Affiliation:

1. Department of Molecular Genetics and Microbiology and University of Florida Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida 32610

Abstract

ABSTRACT During adeno-associated virus (AAV) type 2 productive infections, the p19 promoter of AAV is activated by the AAV Rep78 and Rep68 proteins. Rep-induced activation of p19 depends on the presence of one of several redundant Rep binding elements (RBEs) within the p5 promoter or within the terminal repeats (TR). In the absence of the TR, the p5 RBE and the p19 Sp1 site at position −50 are essential for p19 transactivation. To determine how a Rep complex bound at p5 induces transcription at p19, we made a series of p19 promoter chloramphenicol acetyltransferase constructs in which the p5 RBE was inserted at different locations upstream or downstream of the p19 mRNA start site. The RBE acted like a repressor element at most positions in the presence of both Rep and adenovirus (Ad), and the level of repression increased dramatically as the RBE was inserted closer to the p19 promoter. We concluded that the RBE by itself was not a conventional upstream activation signal and instead behaved like a repressor. To understand how the Rep-RBE complex within p5 activated p19, we considered the possibility that its role was to function as an architectural protein whose purpose was to bring other p5 transcriptional elements to the p19 promoter. In order to address this possibility, we replaced both the p5 RBE and the p19 Sp1 site with GAL4 binding sites. The modified GAL4-containing constructs were cotransfected with plasmids that expressed GAL4 fusion proteins capable of interacting through p53 and T-antigen (T-ag) protein domains. In the presence of Ad and the GAL4 fusion proteins, the p19 promoter exhibited strong transcriptional activation that was dependent on both the GAL4 fusion proteins and Ad infection. This suggested that the primary role of the p5 RBE and the p19 Sp1 sites was to act as a scaffold for bringing transcription complexes in the p5 promoter into close proximity with the p19 promoter. Since Rep and Sp1 themselves were not essential for transactivation, we tested mutants within the other p5 transcriptional elements in the context of GAL4-induced looping to determine which of the other p5 elements was necessary for p19 induction. Mutation of the p5 major late-transcription factor site reduced p19 activity but did not eliminate induction in the presence of the GAL4 fusion proteins. However, mutation of the p5 YY1 site at position −60 (YY1-60) eliminated GAL4-induced transactivation. This implicated the YY1-60 protein complexes in p19 induction by Rep. In addition, both basal p19 activity and activity in the presence of Ad increased when the YY1-60 site was mutated even in the absence of Rep or GAL4 fusion proteins. Therefore, there are likely to be alternative p5-p19 interactions that are Rep independent in which the YY1-60 complex inhibits p19 transcription. We concluded that transcriptional control of the p19 promoter was dependent on the formation of complexes between the p5 and p19 promoters and that activation of the p19 promoter depends largely on the ability of Rep and Sp1 to form a scaffold that positions the p5 YY1 complex near the p19 promoter.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3