Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1

Author:

Terry J M1,Piña S E1,Mattingly S J1

Affiliation:

1. Department of Microbiology, University of Texas Health Science Center, San Antonio 78284.

Abstract

Growth and conversion to the mucoid phenotype by nonmucoid Pseudomonas aeruginosa PAO1 was studied in a chemostat system under conditions designed to reflect those likely to be present during chronic infection in the lung in cystic fibrosis patients. Mucoid variants were consistently isolated during continuous culture in the presence of 0.3 M NaCl or 5 or 10% glycerol. Mucoid subpopulations were also detected under conditions of carbon, nitrogen, or phosphate limitation. During carbon or nitrogen limitation, mucoid conversion was dependent upon the choice of substrate. Phosphate-limited cultures exhibited an inverse relationship between culture growth rate and number of mucoid organisms detected. Mucoid variants were not detected when dilution rates (D) exceeded 0.173 h-1. Conversely, at a D of 0.044 h-1, 40% of the population expressed the mucoid phenotype. Phosphorylcholine, a product of phospholipase C activity on the major lung surfactant phosphatidylcholine, was also used as a growth substrate in nutrient limitation studies. Under all conditions, growth of PAO1 supplied with phosphorylcholine resulted in isolation of mucoid variants, indicating that the lung may provide at least one nutrient source conducive to mucoid conversion. Continuous culture also resulted in detection of a phage associated with strain PAO1. High titers of phage were present under all conditions, including those which yielded no mucoid organisms, suggesting that environmental conditions rather than the phage regulated the appearance of mucoid variants.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3