Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa

Author:

Darzins A,Chakrabarty A M

Abstract

Mucoid strains of Pseudomonas aeruginosa isolated from the sputum of cystic fibrosis patients produce copious quantities of an exopolysaccharide known as alginic acid. Since clinical isolates of the mucoid variants are unstable with respect to alginate synthesis and revert spontaneously to the more typical nonmucoid phenotype, it has been difficult to isolate individual structural gene mutants defective in alginate synthesis. The cloning of the genes controlling alginate synthesis has been facilitated by the isolation of a stable alginate-producing strain, 8830. The stable mucoid strain was mutagenized with ethyl methanesulfonate to obtain various mutants defective in alginate biosynthesis. Several nonmucoid (Alg-) mutants were isolated. A mucoid P. aeruginosa gene library was then constructed, using a cosmid cloning vector. DNA isolated from the stable mucoid strain 8830 was partially digested with the restriction endonuclease HindIII and ligated to the HindIII site of the broad host range cosmid vector, pCP13. After packaging in lambda particles, the recombinant DNA was introduced via transfection into Escherichia coli AC80. The clone bank was mated (en masse) from E. coli into various P. aeruginosa 8830 nonmucoid mutants with the help of pRK2013, which provided donor functions in trans, and tetracycline-resistant exconjugants were screened for the ability to form mucoid colonies. Three recombinant plasmids, pAD1, pAD2, and pAD3, containing DNA inserts of 20, 9.5, and 6.2 kilobases, respectively, were isolated based on their ability to restore alginate synthesis in various strain 8830 nonmucoid (Alg-) mutants. Mutants have been assigned to at least four complementation groups, based on complementation by pAD1, pAD2, or pAD3 or by none of them. Introduction of pAD1 into the spontaneous nonmucoid strain 8822, as well as into other nonmucoid laboratory strains of P. aeruginosa such as PAO and SB1, was found to slowly induce alginate synthesis. This alginate-inducing ability was found to reside on a 7.5-kilobase EcoRI fragment that complemented the alg-22 mutation of strain 8852. The pAD1 chromosomal insert which complements the alg-22 mutation was subsequently mapped at ca. 19 min of the P. aeruginosa PAO chromosome.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3