Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells

Author:

Muñoz Rosario1,García José L.2,Carrascosa Alfonso V.1,Gonzalez Ramon1

Affiliation:

1. Department of Microbiology, Instituto de Fermentaciones Industriales (CSIC)

2. Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain

Abstract

ABSTRACT Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae . The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference30 articles.

1. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

2. Birkkjaer, H., and P. Jonk. 1985. Technological suitability of calf rennet substitutes. Int. Dairy Fed. Bull.194:8-13.

3. Cullen, D., G. L. Gray, L. J. Wilson, K. J. Hayenga, M. H. Lamsa, M. W. Rey, S. Norton, and R. M. Berka. 1987. Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology5:369-376.

4. Emtage, J. S., S. Angal, M. T. Doel, T. J. R. Harris, B. Jenkins, G. Lilley, and P. A. Lowe. 1983. Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc. Natl. Acad. Sci. USA80:3671-3675.

5. Flamm, E. L. 1991. How FDA approved chymosin: a case history. Bio/Technology9:349-351.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3