Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology

Author:

Lin Xiaoxi B.,Gänzle Michael G.

Abstract

ABSTRACTThis study determined the effects of specific metabolic traits ofLactobacillus reuterion its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits inL. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adaptedL. reuterilineage I, glutamate decarboxylase-positive strains of rodent-adaptedL. reuterilineage II, as well as mutants with deletions ingadBorgupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage IL. reuteristrains dominated sourdoughs propagated with 12-h fermentation cycles; lineage IIL. reuteristrains dominated sourdoughs propagated with 72-h fermentation cycles.L. reuteri100-23ΔgadBwas outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles;L. reuteriFUA3400ΔgupCDEwas outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits ofL. reuteridetermine the competitiveness of this species in sourdough fermentations.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3