Regulation of the temporal synthesis of proteins in bacteriophage BF23-infected cells

Author:

Kikuchi S1,Yoshinari K1,Ishimaru H1,Mizobuchi K1

Affiliation:

1. Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan.

Abstract

Regulation of temporal synthesis of pre-early, early, and late proteins in bacteriophage BF23-infected cells has been studied by using five amber mutants defective in genes 1, 2, 10, 14, and 19. The synthesis of pre-early proteins is negatively regulated by the actions of gene 1, a pre-early gene. The switch from pre-early to early protein synthesis is mainly regulated by the second-step DNA transfer reaction, which is controlled by at least genes 1 and 2. Early proteins can be kinetically and genetically divided into two regulatory classes, designated Ea and Eb. The shutoff of Eb-early protein synthesis is associated with the turn-on of late protein synthesis. This step is controlled by genes 10, 14, and 19. Gene 10 also regulates negatively the synthesis of Ea-early proteins, indicating that this gene has a dual function in the regulation of early protein synthesis. The temporal synthesis of phage-encoded proteins is regulated mainly at the transcriptional level. Evidence is presented indicating that the host RNA polymerase is modified by the interaction with the gene products of genes 2, 10, and 14 (gp2, gp10, and gp14, respectively). gp2 interacts with the enzyme in the earlier stage of infection but is replaced by gp10 in the later stage. This exchange reaction depends on the presence of gp14 and gp19 and is related to the switch from Eb to late protein synthesis. Thus, the regulation of BF23 gene expression occurs in a coordinated manner throughout the development of this phage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3